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ABSTRACT

Recently Hall & Seddougui (1989) considered the secondary instability of large amplitude

GSrtler vortices in a growing boundary layer evolving into a three-dimensional flow with wavy

vortex boundaries. They obtained a pair of coupled, linear ordinary differential equations

for this instability which constituted an eigenproblem for the wavelength and frequency of

this wavy mode. Investigations into the nonlinear version of this problem by Seddougui &

Bassom have revealed several omissions in the numerical work of Hall & Seddougui; these

issues are addressed in this note. In particular, we find that many neutrally stable modes are

possible; we derive the properties of such modes in a high wavenumber limit and show that

the combination of the results of Hall & Seddougui and our modifications lead to conclusions

which are consistent with the available experimental observations.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No.NASl-18605 while the authors were in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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§1. Introduction.

The purpose of this article is to repeat and improve the calculation of Hall & Sed-

dougui (1989) (hereafter referred to as HS), concerning an asymptotic description of

the three-dimensional breakdown of steady, spanwise periodic GSrtler vortices. These

authors noted that in the experiments of Bippes & GSrtler (1972) and of Aihara &

Koyama (1981) this breakdown led to a time-periodic flow with wavy vortex bound-

aries similar to those which occur in the Taylor problem. In order to investigate this

phenomenon theoretically, HS superimposed small spanwise periodic travelling waves

on the G5rtler vortices and monitored their development.

The first analytical work on GSrtler vortices concentrated on the linear stability

of external flows over concave walls. However Hall (1982a, b, 1983) showed that much

of this early work was fundamentally flawed for it invoked the parallel flow approx-

imation; but Hall demonstrated that this assumption is unjustifiable except in the

limit of small vortex wavelength. Moreover, in this limit, the GSrtler instability may

be described by an asymptotic structure which accounts for boundary layer growth in

a rational manner. This asymptotic structure was obtained by Hall (1982a) for the

case of infinitesimal amplitude vortices and this was used by Hall (1982b) to determine

the modified structure in the case of weakly nonlinear vortices. Subsequently, Hall &

Lakin (1988) used this latter work to deduce the flow configuration for fully nonlinear,

high wavenumber vortices, at which point the mean flow correction generated by the

presence of the vortices becomes as large as the basic (undisturbed) flow itself. These

fully nonlinear vortices are of the type whose stability to travelling wave disturbances

were considered by HS. Hall & Lakin (1988) demonstrated that for these large ampli-

tude vortices the flow structure consists of essentially three distinct regions. The main

vortex activity is restricted to a central 'core' region which is bounded by two thin

shear layers. The vortices decay exponentially within these shear regions and outside

these zones tile mean flow is governed by the usual boundary layer equations.

Hall & Seddougui (1989) imposed infinitesimal secondary instabilities upon the

flow within the shear layers; these modes took the form of short wavelength, high

frequency travelling waves which were _r/2 radians out of phase with the fundamental

in the spanwise direction so that any instabilities which occurred produced locally

wavy vortex boundarics in the shear layers. It was shown in HS that the governing



equations for thesesecondarymodestake the forms

( 2i 2 v =od2v 1 + ---_-/ rlv -- --_Kv - V2v + 3
d_2

d2w i (fh? + K) w + 2V2w iv�-6
drl-""Y - - "_-- (f_ -t- K) Vv = O. (1.1b)

In this pair of coupled ordinary differential equations for the functions v(rl) and w(r/),

r/ is an O(1) co-ordinate based upon the thickness of the shear layers, (v, w) are the

normal and spanwise components of the velocity of the travelling wave disturbance,

and K and _ are the (dimensionless) wavenumber and frequency of the imposed per-

turbation. Further, the function V01 ) satisfics the Painlev_ equation,

d2V

d l)2
-- rlV = V 3, (1.1c)

with V ,,o (-77)_ as _ _ -oo and V _ x/_AiO? ) as r/ _ oo, see Hastings & McLeod

(1980). For a complete description of the derivation of (1.1), together With an extended

account of tile previous theoretical and practical work relating to GSrtler vortices, see

HS.

Hall & Seddougui (1989) concentrated on locating solutions of (1.1) for which the

flow is neutrally stable, or, in other words, on finding solutions of (1.1) for which K

and f2 are real. To ensure that the travelling waves were confined within the shear

layers, it was necessary to impose the boundary conditions

v, w _ 0 as 77_ 4-oo. (1.1d)

This then implies that as 7? _ oo, (1.1a, b) can be written as

2if_) 2iKd2v 1 + ---_--/ rlv -- _v = 0, (1.2a)
d_?2 3

and
d2w

dtl2 i(_2rl + K)w = O, (1.2b)

so that in this limit two independent solutions for v and w can be found in terms of the

Airy function, Ai. For r/---. -0% HS demonstrated that (1.1a, b) assume the forms

d2v 2i_2 2iK 2x/_
- --v =

dr]2 --_--_v 3 3



d2w

dr] 2
- (2+ ia),w -iKw = " - + -"

3 3
v. (1.3b)

Then the appropriate expansions within (1.3) take the form

where

243¢ 4 + 36¢ 2 (6 + 5if_) - 32_ 2 = 0,

and the two roots of this equation with positive real part were used in order to generate

two independent solutions of (1.3) with v, w _ 0, r/_ -co.

These asymptotic solutions for v and w as lr/[ _ co were taken as initial values

in the numerical integration scheme used to solve (1.1). These equations were written

as a system of four first order differential equations which was solved using a standard

fourth order Runge-Kutta method. The integration procedure was started at r/=- -c_

and at r/ = co and continued to r/ = 0, finding two independent solutions from each

direction. At r/= 0 the continuity of a linear combination of the independent solutions

from each direction produced a problem of the form

Ax = 0, (1.4)

where A(K, F/) is a 4 x 4 complex valued matrix and x is a vector containing the

coefficients of the independent solutions from 7/ = _-boo. Clearly there is only a non-

trivial solution of (1.4) if det(A)= 0. HS found real values of K and f_ for which

det(A)= 0 (and hence for which there are non-trivial neutraUy stable travelling waves)

by employing a Newton-Raphson iteration scheme for two variables.

Hall & Seddougui (1989) focussed their attention on the region K, F/ > 0 and

found only one eigenvalue pair, which was located at

(K,f_) = (4.156,0.742). (1.5)

They speculated that other eigenpairs might possibly exist at higher values of K and

f_, although none were found. Additionally, HS compared these theoretical findings

with the results of the experimental observations by Kohama (1987) and Peerhossaini

& Wesfreid (1988). They reported good qualitative agreement with these practical

results, although the lack of details given by these papers concerning the specific
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experimental configurations used preventeda detailed quantitative comparison being

made.

Recent work by Seddougui& Bassom(1990) concernswith the extension of HS

to the nonlinear regime. Seddougui & Bassom have shown that at the point at which

the secondary wavy mode becomes nonlinear, the steady vortex flow of HS is affected

by self-interactions of the wavy mode and the problem is then governed by an eighth

order coupled set of ordinary differential equations. In the course of this work we

reconsidered the linear problem 0fHS and discovered that the numerical results quoted

in that paper are incomplete. In particular, we found eigenvalue pairs lower than (1.5),

have shown that there are (plausibly) an infinite number of real: valued solution pairs

of (1.1), and have obtained an asymptotic description of the solution of this equation

for K >> 1.

The procedure for the remainder of this note is as follows. In section 2 we present

a revised solution of (1.1) for O(1) values of K and f_, in section 3 we consider the

case K >> 1 and finally we draw some conclusions.

§2. The numerical solution of (1.1)-(1.3).

To obtain real eigenva!ues of the system (1.1)-(1.3) we employed the numerical

method briefly described in the previous section with one modification. Instead of

using the double Newton-Raphson iteration scheme to locate the neutral modes, we

considered a whole range of real pairs (K, _) and for each chosen pair we computed

the matrix A defined by (1.4). Then, using a Standard package, we constructed the

contours in the (K, f_) plane on which Re(detA)= 0 or Im(detA)= 0. These lines, for

the region 0.05 < _/< 3, 0.1 _< K _< 7.9 are illustrated in Figure (1), where solid lines

denote contours on which Re(detA)= 0 and broken linesthose on which Irn(detA)= 0.

Plainly, where these contours cross we have a solution for infinitesimal, neutrally stable

wavy modes. We remark that the apparent multi-crossings of the contours on the left

hand side of this figure are not real features and are a direct result of the c0mbination

of very small absolute values of the determinant of A in this area and of the coarseness

of the grid from which the c0ntours were interpolated. By repeatedly refining this grid

we can show that in reality there are no neutral pairs (K, ft) in this region.

Having identified approximate values of possible wavenumbers and frequencies for
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this secondary mode using this contouring technique, we then applied the Newton-

Raphson iteration scheme to obtain more accurate values for these parameters. Over-

all, we found eight eigenpairs, namely

(0.690, 0.372), (2.900, 0.659), (4.156, 0.742), (5.435,0.795),
(2.1)

(7.53,1.00), (9.60,1.17), (11.4,1.27) and (15.7,1.60),

of which the lowest five are marked on figure (1). We found no more eigenpairs

within the size of grid used (0 < K < 16, 0 < _2 _< 3), but there is no reason to

doubt that if this area were suitably enlarged more neutral pairs could be identified.

Importantly, we deduce from (2.1) that there are neutral pairs lower than (1.5). In

a practical setting, if the frequency of the imposed perturbations on a steady vortex

flow were gradually increased from zero, then the mode with the lowest frequency

eigenvalue would be expected to be the most dangerous as it would occur first. The

eigenfunctions corresponding to this mode are shown in Figure (2) and the asymmetry

of these functions is noticeable. Also, for the case plotted here, Re(v)> 0 across the

whole of the dominant part of the mode, whereas the spanwise velocity component w

has a much more oscillatory nature.

For the higher eigenvalues it was found that it became increasingly more difficult

to locate neutral modes accurately and although we have given only eight pairs in

(2.1), we believe that there is indeed an infinite sequence of neutral modes. Inspection

of the eigenfunctions of Figure (2); of those corresponding to the pair (4.156,0.742)

(presented in HS); and of those corresponding to (9.60, 1.17), illustrated in Figure (3),

suggests some definite trends. In particular, the eigenfunctions are effectively confined

to a region in 7? space centred somewhere to the left of r/= 0. Furthermore, for the

higher modes, the majority of the disturbance shifts to increasingly more negative

values of r/, and becomes ever more symmetrical in appearance. The ratio of the

spanwise and normal velocity components, ]wl/Ivl, increases. These behaviours led

us to an analytical consideration of the problem (1.1)-(1.3) in the limit K >> 1 in an

attempt to elucidate the governing behaviour of neutral modes in this high wavenumber

limit. This work is the subject of the following section.

§3. The high wavenumber solution of (1.1)-(1.3).
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Here we consider the solution of (1.1)-(1.3) for K >> 1. It is found convenient to

seek neutral modes in which the wavenumber K and the frequency n take the forms

= n0/3_, (3.1)

where/3 >> 1 and n0, K1 are O(1) constants. Further, we suppose that the mode is

concentrated within a region of thickness 0(/3-k) centred at a point O(]3_) from the

origin _) - 0. If we then write

K 1

77+ -- = -/3_rh + j3- ry, (3.2a)

and note that since for large negative 77, V ,,- (-r/)_ + ..., we also have

v/ 1[

These scalings suggest that

+ o(_- ,'-)]. (3.2b)

d2wo 2+

v = v0q-/3-rv 1+..., w=fl_ w0+f_-rwl-b... , (3.3a)

and inserting these expansions in (1.1) and equating coefficients of leading powers of_

we find that _, = 0. At next order we obtain the coupled equations for the functions

v0 and w0,

d2vo 2i_0 2V_

dy 2 3 yvo + 3v_W0 = 0, (3.4a)

ifY_
wo yvo -----O, (3.4b)

with boundary conditions

v0, w0 _ 0 as y _ -4-00. (3.4c)

By eliminating w0 between (3.4a, b) we can derive a fourth order differential equa-

tion for v0 which may be solved numerically using standard Runge-Kutta ideas. How-

ever, careful inspection and analysis of (3.4) reveals that a solution of the system for

which v0, w0 _ 0 as ]r/I _ oo is possible for all non-zero real no. Without loss

of generality, we can find solutions of (3.4) such that Re(v0) and Re(w0) are even

functions about y = 0 whilst Im(v0) and Im(wo) are odd functions. As _0 is not

6



determined at this stage, we are forced to consider the next order equations.

are found to be

d2vl 2i_to 2v/6 _ ( I(1)
dy 2 3 yvl+ 3x/_wl = _ Y-- _00 wo,

with

d2wl i_oy)__+(2
dY 2 _00 --

These

(3.5a)

i  yvo
Wl-- --yv13 = 2w0 -_ y-- _00/ , (3.5b)

Vl,Wl _ 0 as y _ -t-co. (3.5c)

Now as the homogeneous forms of (3.5) are precisely those equations given in

(3.4), the set (3.5) has a solution only if a certain compatibility condition holds. To

derive this compatibility criterion we consider the system adjoint to (3.4) which in this

case is formed by the functions (gl(Y),g2(Y)) where

d2gl 2i_t0 i_
ygl yg2 -- 0, (3.6a)

dy 2 3 3

with

d2g2+ 2V/6 ( 2 )V oog + iaoy g2= o, (3.cb)

gl, g2 _ 0 as y _ ±oo. (3.6c)

As before, we can obtain solutions of (3.6) in which the real parts gl and g2 are

even functions whilst the respective imaginary parts are odd functions. We multiply

(3.5a) by gl, (3.5b) by g2, add the resulting equations and integrate by parts over the

range (-co, oo). Then on comparing imaginary parts of the resulting eigenrelation we

(y2Re(g2vo)) dy -- O,

(3.7)

find that (3.5) has a solution only if

/0 /0(_Im(g_o)) dy + 2
3  o/o°(yIm(g2wo) ) dy -- -_

where the evenness and oddness of the various functions about y = 0 has been utilised.

Incidentally, we note that on equating real parts of the eigenrelation we obtain K1 --

0. Numerically, we found that (3.7) is satisfied for _t0 --_ 0.26 and the respective

disturbance functions v0 and w0 for this case are presented in Figure (4).

This then suggests that high frequency, high wavenumber modes are indeed pos-

sible; in particular if K >> 1 we have _2 ,,_ 0.26K _. Additionally, the position of the

7



disturbance within the shear layer moves towards the core region of vortex activity,

the perturbation is confinedwithin a thin, O(K-}) sized zone relative to the depth

of the shear layer, and the spanwisevelocity component of the wavy mode is O(K_)

times that of the normal component. These asymptotic results provide satisfactory

agreementwith the higher numerical valuescalculated in (2.1) and it is observedthat

there is resemblancebetween the asymptotic eigenfunctionsof Figure (4) and those

corresponding to the eigenpair (9.60,1.17)shown in Figure (3). We also remark that

here we have not specified K and have only assumed that this is some large quantity.

In practice the actual possible values for K >> 1 would be determined by a higher

order problem but we do not pursue such a consideration here. Instead, we feel that

the principal result of this analysis is that, almost certainly, there is an infinity of

neutral wavy modes for tiffs flow structure. This confirms the conjecture presented

by HS, who postulated that neutral wavy modes may possibly exist at wavenumbers

higher than that for the mode with eigenvalues given by (1.5).

§4. Conclusions.

In this article, which should be read in conjunction with HS, we have demonstrated

that there are many solutions for infinitesimal, neutrally stable wavy modes confined

to tile shear layers of a fully nonlinear, high wavenumber GSrtler vortex. This is

at variance with the result of Hall &: Seddougui (1989) who found only one such

mode: although their conclusion, that such a large amphtude vortex is unstable to

modes trapped within the shear layers, remains unaltered. Our results are improved

from those of HS due to the use of the contouring method described in section 2.

This ensurcd that all possible neutral mode solutions within the region 0 < K < 16,

0 < £t _ 3 should be identified. This is in contrast to the scheme employed by HS, who

used the Newton-Raphson technique alone and relied on finding all possible neutral

solutions by using a sufficiently wide variety of initial estimates to which the iteration

procedure was applied.

Since the wavy modes are stable when their non-dimensional frequency f_ = 0,

HS noted that as f_ is increased the mode with the lowest frequency is potentially

more dangerous than the other modes as it occurs first. However, at large values of

f_ it is unclear as to which is the most important mode as we would need to identify

r
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the mode with the largest growth rate. The contour plot in Figure (1) shows that

(K, 12) = (0.690, 0.372) is the lowest mode within the region K > 0,12 > 0 and that,

plausibly, an indefinite number of neutral modes exist. In particular there are modes

with K >> 12 >> 1 whose asymptotic structure has been discussed in section 3.

The physical and experimental implications of our revised analysis follow similar

lines to those given in HS. Rather than repeat the discussion given there and to which

the reader is referred, we merely emphasise that our results concerning the possibility of

wavy modes in GSrtler vortices are consistent with the available experimental accounts

on the subject, although it is very difficult to obtain quantitive comparisons between

our theory and the practical observations.

Our conclusions concerning the existence of many possible neutral linear modes

raises questions of which of these modes is likely to be the most important in practice.

This may be resolved by pursuing weakly nonlinear and, ultimately, fully nonlinear

analyses of these wavy modes -- a task currently being tackled by Seddougui & Bas-

som. When concrete conclusions become available from this study, the full implications

of our work for this wavy vortex problem should become clearer.
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FIGURE CAPTIONS

Figure (1). Sketches of the contours in (K, fl) space on which the real and imagi-

nary parts of det(A), defined by (1.4), vanish. On solid lines Re(det A)=0, on broken

lines Im(det A)=0. We have a solution for neutral wavy modes wherever these con-

tours meet and five such locations are ringed, see (2.1). Here 0.05 _< 12 _< 3, and (a)

0.1 <K_<4, (b) 4<K<_7.9.

Figure (2). Neutral eigenfunctions v(o) and w(r_) for (K,a) = (0.690,0.372). a)

Re(v), b) Ira(v), c) Re(w), d) Im(w).

Figure (3). Neutral eigenfunctions v(n) and w(n) for (K,a) = (9.60,1.17). _)

Re(v), b) hn(v), c) Re(w), d) Ira(w).

Figure (4). Asymptotic eigenfunctions vo(y) and wo(y) (defined by (3.3)) in the

limit K >> 1 with ft0 = 0.26.
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